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Abstract: Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-
contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm
is an association of microorganisms that is irreversibly linked with a surface, contained in an ex-
tracellular polymeric substance matrix, which poses a formidable challenge for food industries. To
avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible
stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required
to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspec-
tives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm,
and identification methods. As biofilms are largely responsible for food spoilage and outbreaks,
they are also considered responsible for damage to food processing equipment. Hence the need to
gain good knowledge about all of the factors favouring their development or growth, such as the
attachment surface, food matrix components, environmental conditions, the bacterial cells involved,
and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms
in the food industry due to the resistance of disinfectants and the mechanisms developed for their
survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and
biofilm-associated proteins.

Keywords: biofilms; food industry; food microbiology; food safety

1. Introduction

Typically, bacteria bind to surfaces and form spatially structured communities inside
a self-produced matrix, which consist of extracellular polymeric substances (EPS) known
as biofilms [1,2]. Biofilms imply major challenges for the food industry because they allow
bacteria to bind to a range of surfaces, including rubber, polypropylene, plastic, glass,
stainless steel, and even food products, within just a few minutes, which is followed by
mature biofilms developing within a few days (or even hours) [3].

Since ancient times, this sessile life form has been followed as an excellent survival
technique for microorganisms, given the protective barrier generated and physiological
changes made by the biofilm matrix, while it fights against the adverse environmental
circumstances faced typically by bacteria in man-made and natural settings, even in food-
processing facilities [4,5]. Hence, biofilms are believed responsible for damaged equipment,
more expensive energy costs, outbreaks, and food spoilage [5–8]. Biofilms have become
more robust to disinfections in many wide-ranging food industries, such as processing
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seafood, brewing, dairy processing, and meat and poultry processing [9] There is com-
pelling evidence for biofilm lifestyle making them more resilient to antimicrobial agents,
particularly compared to planktonic cells (Figures 1 and 2). This entails having to remove
them from surfaces of food processing plants, which poses a massive task [10–12].
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Microbiological surface management is relevant for assessing and making decisions
as to whether residual microbial species are found at a suitable level, and if harmful
microorganisms are removed. The obtained results will allow criteria to be set, such as
how to clean surfaces and food product quality [13,14].

Sensory tests that involve visually inspecting surfaces with good lighting, smelling
unpleasant odours, and feeling encrusted or greasy surfaces are run as a process regulation
to instantly overcome visible sanitation defects, while microbiological evaluations are often
made to guarantee consistency with microbial standards and to make improvements to
sanitation procedures [15]. The fact that visual inspection cannot coincide with bacterial
counts has been well-documented [16]. The hygienic conditions of food-contact surfaces
must be properly examined for all of the above-cited purposes. Lack of convergence
between the various approaches followed to detect and quantify biofilms does, however,
make it more difficult for the food industry to locate the most effective ones [17]. The
Hazard Analysis and Critical Control Points (HACCP) system and good manufacturing
practices have been developed to regulate food safety and quality. Bacterial biofilms are not
directly mentioned in the HACCP system employed on food processing facilities. Hence,
an updated HACCP system that contemplates evaluating biofilms in food environments,
and establishes an apt sanitation plan, is expected to provide much clearer contamination
information, and to facilitate production in the food industry’s biofilm-free processing
systems [18]. The importance and impact of biofilms on the food industry have become clear
in several works where the cross-contamination is common among these food products,
with a wide range of pathogens, including Listeria monocytogenes, Yersinia enterocolitica,
Campylobacter jejuni, Salmonella spp., Staphylococcus spp., Bacillus cereus, and Echerichia coli
O157:H7 [19].
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The main objectives of this review were to identify the most important biofilm exam-
ples in the food industry and to present methods to visualise in situ biofilm production,
how to avoid this production, and methods to remove biofilms. This study focused on the
microbial biofilms that affect the food industry and provides an overview of their impor-
tance in cross-contamination when food comes into contact with surfaces. Although going
into detail in each discipline, specific to microbiology for biofilm isolation and identification,
is not the object of this work, it contributes new knowledge about techniques to control
and eradicate biofilms in the food industry from food safety and quality perspectives.

2. Biofilm Development in Food Processing Environments

Modern food processing lines are a suitable environment for biofilms to form on
food contact surfaces, primarily due to manufacturing plants’ complexity, long production
periods, mass product generation, and large biofilm growth areas [21]. Many food-borne
bacteria may, therefore, bind to the contact surfaces present in these areas, which could
contribute to increase the risk of bacterial food-borne diseases. By way of example, 80%
of bacterial infections in the USA are believed to be related specifically to food-borne
pathogens in biofilms [9].

Mixed-species biofilm production is extremely dynamic and depends on the attach-
ment surface’s characteristics [22], food matrix components [23], environmental condi-
tions [24], and involved bacterial cells [8,25].

Attachment surface properties, such as hydrophobicity, electrostatic charging, interface
roughness, and topography impact biofilm formation and, thus, affect the overall hygiene
status of the surface [22,26]. Nevertheless, the precise consequence of some parameters
vastly varies under specific laboratory conditions. Some experiments have revealed that
bacterial attachment is more likely to happen on rougher surfaces [22,27], while others
have found no association between roughness and bacterial attachment [28]. Hydrophobic
surfaces tend to attract more bacteria, but studies that have tested the hydrophobicity effect
present opposing results [29,30], and other experiments indicate that hydrophilic surfaces
enable more bacterial adherence than hydrophobic equivalents [27,28]. The fact that clear
results are lacking might lie in the various methods and bacterial strains employed, and
in overall attachment likely being established for several reasons. The most popular food
contact material in the food industry is stainless steel type 304 because it is chemically
inert, easy to clean, and extremely corrosion-resistant at a range of processing temperatures.
Given its continuous usage, this material’s topography typically displays crevices and
cracks that protect bacteria from sanitising treatments and mechanical cleaning methods.
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The food matrix components in food processing environments also influence bacterial
attachment [31]; e.g., food waste, such as milk and meat exudates enriched in fats, pro-
teins, and carbohydrates, facilitate microorganism growth and multiplication, and favour
dual-species biofilm development by E. Coli and Staphylococcus aureus [32]. Milk lactose
improves biofilm production by both Bacillus subtilis, by activating the LuxS-mediated
quorum-sensing system [33], and S. aureus through intercellular polysaccharide adhesion
development [34]. Improved biofilm production by Geobacillus spp. in milk results in high
concentrations of free Ca2+ and Mg2+ [35].

Microbial cell properties, especially hydrophobicity, cellular membrane components
(e.g., protein and lipopolysaccharide), appendages (e.g., pili, flagella, fimbriae) and bacteria-
secreted EPS, also play a key role in stimulating biofilm production [22]. Fluctuations in
biofilm-forming capability among species or strains of different genotypes and serotypes
have been identified, which reveals the evolution of enhanced biofilm formation from
various genetic backgrounds [8,36]. Similar species can also impact one another in a mixed
microbial community, which culminates in the co-colonisation of certain species.

3. Examples of the Most Relevant Biofilms in the Food Industry

In the food industry, biofilm-forming species appear in factory environments and
can be pathogenic to humans because they develop biofilm structures. The processing
environments of the food industry, e.g., wood, glass, stainless steel, polyethylene, rubber,
polypropylene, etc., act as artificial substrates for these pathogens [37,38]. The character-
istics of the bacterial growth form on food in a processing environment involve different
behaviours when considering cleaning and disinfection processes. Controlling biofilm
formations in the food industry can prove difficult when having to decide the right strategy.

Examples of these relevant biofilm-forming pathogens for the food industry are briefly
described in Table 1.

3.1. Bacillus Cereus

Bacillus cereus is a Gram-positive anaerobic or facultative anaerobic spore-forming bac-
terium that can grow in various environments at wide-ranging temperatures (4 ◦C–50 ◦C).
It is resistant to chemicals, heat treatment, and radiation [39]. B. cereus is a frequently iso-
lated soil inhabitant from food and food products, such as rice, dairy products, vegetables
and meat. It secretes toxins that can cause sickness and diarrhoea symptoms in humans.

B. cereus is responsible for biofilm formation on food contact surfaces, such as stainless
steel pipes, conveyor belts and storage tanks. It can also form floating or immersed biofilms,
which can secrete a vast array of bacteriocins, metabolites, surfactants, as well as enzymes,
such as proteases and lipases, in biofilms, which can affect food sensorial qualities [40].
Motility by bacterial flagella confers access to suitable biofilm formation surfaces, and is
required for biofilms to spread on non-colonised surfaces. However, B. cereus flagella have
not been found to be directly involved in adhesion to glass surfaces, but can play a key role
in biofilm formation via their motility [55].

3.2. Campylobacter Jejuni

Campylobacter spp., mainly C. jejuni, are Gram-negative spiral, rod-shaped, or curved
thermophilic and bipolar flagellated motile bacteria [41]. C. jejuni, also known as an
anaerobic bacterium, can develop biofilms under both microaerophilic (5% O2 and 10%
CO2) and aerobic (20% O2) conditions [56]. Despite it being a fastidious organism, C. jejuni
can survive outside the avian intestinal tract before it reaches a human host. A range of
environmental elements initiates the formation of biofilms, which are then affected by a set
of intrinsic factors [57]. The European Union One Health 2018 Zoonoses Report classifies
C. jejuni as an opportunistic pathogen that is believed to be the causative agent of most
bacterial gastroenteritis cases, and has been regarded as a common commensal of food
animals and poultry, with turkeys and hens in particular [42]. When the preparation and
processing areas of food products or water become contaminated, such as unpasteurised
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milk, C. jejuni reaches the human host by infecting and colonising the gastrointestinal tract
to cause disease [43].

Table 1. Biofilm-forming pathogens in the food industry.

Pathogen Characteristics Contaminated Food Examples of Harmful
Spoilage Effects References

Bacillus cereus

Gram-positive,
spore-forming,

anaerobic, facultative
anaerobic

dairy products, rice,
vegetables, meat

diarrhoea and vomiting
symptoms [39,40]

Campylobacter jejuni Gram-negative, aerobic
and anaerobic

animals, poultry,
unpasteurised milk

bloody diarrhoea, fever,
stomach cramp, nausea

and vomiting
[41–43]

Escherichia coli Gram-negative,
rod-shaped

raw milk, fresh meat, fruits
and vegetables

diarrhoea outbreaks
and haemolytic uremic

syndrome
[44]

Listeria monocytogenes
Gram-positive,

rod-shaped, facultative
anaerobic

dairy products, meat,
ready-to-eat products, fruit, soft

cheeses, ice cream,
unpasteurised milk, candied

apples, frozen
vegetables, poultry

listeriosis in the elderly,
pregnant women and

immune-compromised
patients

[45,46]

Salmonella Enterica
Gram-negative,

rod-shaped, flagellate,
facultative aerobic

Poultry meat, bovine, ovine,
porcine, fish

can cause
gastroenteritis or

septicaemia
[47,48]

Staphylococcus aureus

Gram-positive,
non-spore forming,

non-motile, facultative
anaerobic

meat products, poultry, egg
products, dairy products, salads,

bakery products, especially
cream-filled pastries and cakes,

and sandwich fillings

methicillin resistance,
can cause vomiting and

diarrhoea
[49,50]

Pseudomonas spp.
psychrotrophic, motile,

Gram-negative
rod-shaped

fruits, vegetables, meat surfaces
and low-acid dairy products

produces blue
discolouration on fresh

cheese.
[17]

Geobacillus
stearothermophilus

thermophilic,
Gram-positive,

spore-forming, aerobic
or facultative anaerobic

dried dairy products
production of acids or

enzymes leading to
off-flavours

[51,52]

Anoxybacillus
flavithermus

thermophilic organism,
Gram-positive,
spore-forming,

facultatively anaerobic,
non-pathogenic

dried milk powder an indicator of poor
hygiene [53,54]

Pectinatus spp.
Gram-negative,

non-spore-forming,
anaerobic

beer and brewery environment

rapid cell growth
makes beer turbid and
smells like rotten eggs
due to production of
sulphur compounds

[23]

3.3. Enterohaemorrhagic Escherichia coli (EHEC)

Escherichia coli is a Gram-negative and rod-shaped bacterium. Most E. coli strains form
part of human intestinal microbiota and pose no health problem. However, the virulence
types of E. coli include enterotoxigenic (ETEC), enteroinvasive (EIEC), enteropathogenic
(EPEC), and Vero cytotoxigenic (VTEC). O157:H7 EHEC is the most frequent serotype asso-
ciated with EHEC infections in humans in the USA [58]. Widespread E. coli dissemination
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in natural environments is, to a great extent, due to its ability to grow as a biofilm. It is
worth considering that several E. coli strains may cause disease in humans, and that En-
terohaemorrhagic E. coli (EHEC) strains are the most relevant for the food industry. EHEC
serotype O157:H7 is the human pathogen responsible for bloody diarrhoea outbreaks
and haemolytic uremic syndrome (HUS) worldwide. They can be transmitted by raw
milk, drinking water or fresh meat, fruit, and vegetables; e.g., melons, tomatoes, parsley,
coriander, spinach, lettuce, etc. [44].

E. coli can employ pili, flagella and membrane proteins to initiate attachment to
inanimate surfaces when flagella are lost after attachment and bacteria start producing
an extracellular polymeric substance (EPS) that helps to confer bacteria better resistance
to disinfectants [59]. There are reports indicating that although EHEC can form biofilms
on different food industry surfaces, neither an effective means to prevent EHEC biofilm
formation nor an effective treatment for its infections exists because antibiotic treatment
tends to increase the risk of haemolytic-uremic syndrome and kidney failure [60].

3.4. Listeria Monocytogenes

Listeria monocytogenes is a Gram-positive bacterium and a ubiquitous food-borne
pathogen that can appear in soil, food, and water. Its ingestion can result in abortions
in pregnant women, and other serious complications in the elderly and children. The
pathogen can be transmitted to several food types, such as dairy products, seafood, meat,
fruit, ready-to-eat meals, ice cream, soft cheeses, unpasteurised milk, frozen vegetables,
candied apples, and poultry [45,46], but it is not known to be resistant to pasteurisation
treatments [61]. The pathogen proliferates at low temperature, and is able to form pure
culture biofilms or grow in multispecies biofilms [62]. L. monocytogenes can survive under
acidic conditions for lengthy periods and can form biofilms that grow without oxygen.
Its numbers are likely to rise or lower in biofilms depending on the competing microbes
present [63].

Given the presence of pili, flagella and membrane proteins, prevalent L. monocytogenes
strains possess good adhesion ability in food processing environments [64].

3.5. Salmonella Enterica

Salmonella enterica is a Gram-negative, rod-shaped, flagellate and facultative aerobic
bacterium, and a species of the genus Salmonella [65].

It can cause gastroenteritis or septicaemia (in some serovars) [66]. Salmonella spp.
express proteinaceous extracellular fibres known as curli, which are involved in surface
and cell-cell contacts, and in promoting community behaviour and host colonisation [67].
Besides curli, different fimbrial adhesins have been identified with biofilm formation
implications that are serotype-dependent [40]. S. enterica serovar Enteritidis is the most
frequent serotype to cause fever, vomiting, nausea diarrhoea, and abdominal pain as main
symptoms [47]. Poultry meat is a frequent reservoir for these bacteria in processed food,
whose importance as a food pathogen has been demonstrated by the fact that S. enterica
biofilm formation on food surfaces was the first reported case in 1966 to possess complex
multicellular structures [48].

When contaminating a food pipeline biofilm, S. enterica may cause massive outbreaks,
and even death in infants and the elderly. It can grow on stainless steel surfaces to
form a three-dimensional (3D) structure with several call layers of different morphologies
depending on available nutrients, such as the reticular shaped ones generated when
cultured on tryptic soy broth (TSB) medium [68].

3.6. Staphylococcus Aureus

Staphylococcus aureus is a Gram-positive, non-spore-forming, non-motile, facultative
anaerobic bacterium capable of producing enterotoxins from 10–46 ◦C. S. aureus can multi-
ply on the skin and mucous membranes of food handlers, and can become a major issue
in food factories [49]. These enterotoxins are heat-stable and can be secreted during S.
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aureus growth in foods contaminated by food handlers. The bacterium grows well in high
salt- or sugar-content foods with little water activity. The foods frequently implicated in
Staphylococcal food-borne disease are meat and meat products, poultry and egg products,
milk and dairy products, bakery products, salads, and particularly cream-filled cakes and
pastries and sandwich fillings [50]. S. aureus is known for its numerous enteric toxins. These
enterotoxins bind to class II MHC (major histocompatibility complex) in T-cells, which
results in their activation that can lead to acute toxic shock with sickness and diarrhoea [69].

3.7. Pseudomonas spp.

Pseudomonas is a heterotrophic, motile, Gram-negative rod-shaped bacterium. Pseu-
domonads are generally ubiquitous psychrotrophic spoilage organisms that are often found
in food processing environments, including floors and drains, and also on fruit, vegetables,
and meat surfaces, and in low-acid dairy products [17,62]. The extracellular filamentous
appendages produced by motile microorganisms result in both the attachment process
and the interaction with surfaces in different ways. Flagella and pili have been thoroughly
studied [70].

When biofilms develop and their regulation by quorum sensing is considered, Pseu-
domonas aeruginosa can be taken as a model organism [71], which is about 1–5µm long and
0.5–1.0µm wide. A facultative aerobe grows via aerobic and anaerobic respiration with
nitrate as the terminal electron acceptor [71].

Pseudomonas spp. produce huge amounts of EPS and are known to attach and form
biofilms on stainless steel surfaces. They can co-exist with other pathogens in biofilms
to form multispecies biofilms, which make them more resistant and stable [62]. These
biofilms can be accompanied by a distinct blue discolouration (pyocyanin) on fresh cheese
produced by P. fluorescens [72].

3.8. Geobacillus stearothermophilus

Geobacillus stearothermophilus is a Gram-positive, thermophilic, aerobic, or facultative
anaerobic bacterium [73]. Thermophiles, such as G. Stearothermophilus, formerly known
as Bacillus stearothermophilus, can attach to stainless steel surfaces on processing lines in
evaporators and plate heat exchangers, which allows them to grow and produce biofilms,
which implies the potential release of single cells or aggregates of cells into the final dry
product [74]. B. stearothermophilus are able to form biofilms on clean stainless steel surfaces
and to release bacteria into milk during dairy industry processing [75]. The above-cited
authors observed that the conditions for a biofilm in a laminar flow milk system were more
adequate for the growth of spore-forming bacteria, which are thermophilic. Their growth
as a culture medium in milk is quite difficult [75].

3.9. Anoxybacillus flavithermus

Anoxybacillus flavithermus is another Gram-positive, thermophilic, and spore-forming
organism that is facultatively anaerobic and non-pathogenic [76]. A. flavithermus is a poten-
tial contaminant of dairy products, and poses a problem for the milk powder processing
industry, as high levels will reduce milk powder acceptability for both local and interna-
tional markets [77]. A. flavithermus spores are very heat-resistant and their vegetative cells
can grow at temperatures up to 65 ◦C with a significant increase in bacterial adhesion on
stainless steel surfaces in the presence of skimmed milk. This indicates that milk positively
influences these species’ biofilm formation [78]. In the dairy industry, the commonest
biofilm-forming isolates are thermophilic genera [79]. In many parts of the world, A.
flavithermus and G. stearothermophilus are regarded as the most dominant thermophilic
microbial contaminants of milk powders [78].

3.10. Pectinatus spp.

Pectinatus is Gram-negative, non-spore-forming, and anaerobic bacteria that have been
linked with a high concentration of biofilms in breweries due to sanitation problems [80].
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Spoilage bacteria were first isolated from a brewery in the USA in unpasteurised beer stored
at 30 ◦C [81]. P. cerevisiiphilus have also been isolated from many breweries in Germany,
Spain, Norway, Japan, the Netherlands, Sweden, and France [80].

3.11. Synergistic Pathogens

A combination of several pathogens can synergistically interact to form biofilms in the
food industry. In food-processing environments, bacteria are able to exist as multispecies
biofilms, from where both spoilage and pathogenic bacteria can contaminate food [82].
For instance in the fishing industry, fresh fish products can suffer from biofilm formation
by mixed pathogenic species (Aeromonas hydrophila, L. monocytogenes, S. enterica, or Vibrio
spp.), which can imply significant health and economic issues [83]. Synergistic interactions
have been observed in a fresh-cut produce processing plant, where E. coli interacted with
Burkholderia caryophylli and Ralstonia insidiosa to form mixed biofilms. Acylhomoserine
lactones (AHLs) can control biofilm formation in synergistic interactions among mixed
species. Interference of AHLs is manifested by AHL lactonases and acylases, both of which
are present in Gram-positive and Gram-negative bacteria [60].

Bacteria use quorum sensing to coordinate biofilm production and dispersion, when
bacteria attach to a biotic or abiotic surface, and cell-to-cell attachment engages in com-
munication via a quorum sensing (QS)-based extracellular cell signalling system [84]. The
importance of cell signalling for bacterial biofilm formation has been further confirmed
by the control of exopolysaccharide synthesis by quorum-sensing signals, as in Vibrio
cholera [85].

Synergistic pathogens are found in several works, where biofilm levels of the four-
species consortia have been further examined and compared to the biofilm production
levels of each isolate under monospecies conditions. They have revealed that P. aeruginosa
and A. junii isolated from different samples to contribute as best biofilm producers, includ-
ing poor or non-biofilm-producing isolates, which increases the overall biofilm formation
in the included consortia [86]. Several authors [87] have found positive synergistics in
other studies by investigating mixed species of biofilms, such as Candida albicans.

In food industries, biofilm-related effects (pathogenicity, corrosion of metal surfaces,
and alteration to organoleptic properties due to the secretion of proteases or lipases) are
critically important. For example, in the dairy industry several processes and structures
(pipelines, raw milk tanks, butter centrifuges, pasteurisers, cheese tanks, packing tools) can
act as surface substrates for biofilm formation at different temperatures and involve several
mixed colonising species. Thus, it is essential that accurate methods to visualise biofilms in
situ be set up to avoid contamination and to ensure food safety in the food industry.

4. Biofilm Control and Elimination

It is well-known that biofilm bacteria present a distinct phenotype with a genotype as
regards gene transcription and growth rates under very particular conditions that differ
from planktonic conditions [88]. Biofilms are capable of adhering to a very wide diversity of
surfaces with distinct biotic and abiotic compositions, including human tissue and medical
devices. Once biofilms form, they are a major threat because they cause infectious diseases
and economic loss. In the 1940s, several authors produced further research works into
biofilm evolution and surface relations for marine microorganisms [89] and seawater [90].
Nevertheless, marked progress has been made given the incorporation of the electron
microscope, which allows high-resolution photomicroscopy at much higher magnifications
than light microscopy [85]. Indeed, the most revealing discovery of the relation with biofilm
elimination was a description of its structure, the surrounding matrix material, and the
cells enclosed in these biofilms were polysaccharides, as by special stains revealed [85].
Doubtlessly, disinfectants have proven more efficient in fighting against biofilms since 1973,
while Characklis (1973) [91] showed marked persistence and resistance to disinfectants,
such as chlorine.
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4.1. Biofilm Elimination in the Food Industry

Biofilm formation has been investigated in food industry and hospital environments.
Perhaps, in the research conducted, hospitals, to eliminate biofilms, have been more
successful, thanks to the easier applications and special surface compositions (antibiofilm
activity) in medical surroundings, such as implants, prostheses, tools, and surfaces for
operating theatres.

To date, many efforts have been made to reduce biofilm formation on food industry
surfaces, but those works were based mainly on new disinfectants with different efficacies.
These results have improved in line with specific mechanisms for initial surface attachment,
developing a group structure and ecosystem, and detachments [75] with dissimilar results.

Nowadays, disinfectants are the best ally to eliminate biofilms. However, other
research fields, such as the composition of surfaces for materials to prevent bacterial
adhesion and developing phages to combat biofilm-forming bacteria, have obtained
favourable results. Doubtlessly, most research works have focused on the bacteriolog-
ical biofilm, without discussing the hypothesis of filamentous fungi being responsible
for biofilm formation. Several authors [92,93] support this theory, where the presence of
Aspergillus fumigatus has been presented as biofilm-responsible. In this case, the marked
similitude of bacteriological and filamentous fungi biofilms is based on morphological
changes, the presence of an extracellular polymeric matrix, differential gene expression,
and distinct sensitivity to antifungal drugs compared to diffuse or loosely associated
(planktonic) colonies [94,95].

Before we go on to explain several factors that could influence bacterial adhesion and
biofilm formation, we should bear the food industry’s hygiene design in mind. In order to
prevent microorganisms entering food production, factories, and the employed hygienic
equipment should be designed to limit microorganisms from accessing. Aseptic equipment
must be isolated from microorganisms and foreign particulates. To prevent microorganism
growth, equipment should be designed to prevent any areas where microorganisms can
harbour and grow, along with gaps, crevices, and dead areas. This is also important during
production, when microorganisms can grow very quickly under favourable conditions [96].

According to such premises, food companies have the capacity to apply innovation
to design the industry and its equipment. In both the USA and the European Union (EU),
the trend in regulations in this field is not so much command and control by government
regulators, but lies more in self-determination by the food industry. In particular, hazard
analysis and critical control points (HACCP) systems provide the skills to replace detailed
regulatory requirements with the overall goals to be fulfilled [97]. The Food and Drug
Administration (FDA) and the United States Department of Agriculture (USDA) Food
Safety Inspection Service (FSIS) share primary responsibility for regulating food safety in
the USA. One example is the recommendation for equipment and process controls: “Seams
on food-contact surfaces shall be smoothly bonded or maintained to reduce accumulation
of food particles, dirt, and organic matter and thus minimise the opportunity for growth of
microorganisms” [85].

European Union (EU) statutory instruments include EC regulation no. 852/2004
(Hygiene of Foodstuffs) and EC regulation no. 853/2004 (Specific Rules Food of Animal
Origin), which expect food manufacturers to control food safety risks by HACCP systems.

In short, the performance of a cleaning and disinfection programme (CDP) to avoid
biofilm formation should start by aptly designing the hygiene of equipment, surfaces, and
devices. Today the CDP is a proven effective measure in fighting against biofilms.

4.2. Factors Associated with Bacteria

Several factors associated with surfaces or bacteria can influence adhesion from the
planktonic phase and biofilm evolution, such as:

Surfaces:

• Surface charge: the adhesion sequence can be influenced by the particle surface charge
in combination with the electrode’s surface charge.
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• Hydrophobicity: adsorption of surface-active organics influences the surface’s hy-
drophobic or hydrophilic character, and changes surface tension [98].

• Temperature: temperature and contact time impact the bacterial adhesion and biofilm
formation process, and increasing the formulation of mathematical models is necessary
to assess how both factors and their interactions influence the process [99].

• Presence of substrates: adsorption of electrolyte components and the particle surface
are equally important. Adsorption of surface-active organics impacts the surface’s
hydrophobic or hydrophilic character, and also changes surface tension [98].

Bacterial cellular surface components:
Hydrophobic interactions tend to increase with the enhanced non-polar nature of one

involved surface or more, and most bacteria are negatively charged [85]. This means that
the cell surface’s hydrophobicity is a relevant factor during adhesion.

• Fimbria, pili, and flagella: fimbriae, non-flagellar appendages other than those impli-
cated in the transfer of viral or bacterial nucleic acids (known as pili) are responsible
for cell surface hydrophobicity. Most investigated fimbriae contain a high proportion
of hydrophobic amino acid residues [100]. Fimbriae include adhesins that attach to
some sort of substratum so that bacteria can withstand shear forces and obtain nutri-
ents. Therefore, fimbriae play a role in cell surface hydrophobicity and attachment,
presumably by overcoming the initial electrostatic repulsion barrier between the cell
and the substratum [101].

Studies’ responses surface methods are used to not only develop and optimise models
for food processing systems and operations, but also to better elucidate bacterial adhe-
sion and biofilm formation processes. The response surface method provides valuable
information to help decision making about disinfection and cleaning procedures for the
utensils, equipment and containers employed in the food industry [102]. Hence, surfaces
and materials of equipment, plus floors and walls, also impact biofilms, along with dead
spaces, crevices, porous and rough material surfaces, which must be eliminated to avoid
biofilm formation [12].

The most adopted strategies for controlling biofilms are sanitation procedures that
combine detergents and disinfectants. Alkaline detergent eliminates organic and inorganic
acid detergent waste from surfaces, while disinfectants reduce spoilage microorganisms,
and diminish or eliminate pathogens, to safe levels [12]. Enzymatic detergents have
replaced traditional alkaline and acid detergents, because enzymes (proteases, lipases,
amylases) can remove biofilms in the food industry [102] as enzymes reduce the physical
integrity of PS by weakening the structural bonds of the lipids, proteins, and carbohydrates
that form its structure [103]. Other advantages over detergents include low-toxicity and
biodegradability, but application costs and requirements (temperature, time) are higher
than detergents. This is why several detergent manufacturers have marketed a synergetic
combination of enzymes, chelating agents, surfactants, and solvents.

4.3. Disinfectants and Biofilm Resistance

The most widely used disinfectants in the food industry’s disinfection programmes
are quaternary ammonium compounds (QAC), amphoteric compounds, hypochlorites,
peroxides (peracetic acid and hydrogen peroxide) [15], aldehydes (formaldehyde, glu-
taraldehyde, paraformaldehyde), and phenolics. This product list remains unchanged after
18 years. Today, alkyl amines, chlorine dioxide and quaternary ammonium blends are
incorporated into disinfection programmes. Besides these, alcohols, phenolic compounds,
aldehydes, and chlorhexidine are also resorted to, but mostly in health services. In the food
processing industry, disinfectants can remain on surfaces for longer due to microorganisms’
prolonged exposure to the employed disinfectant, which improves their efficacy [104].

1. Sodium hypochlorite (NaOCI):

It is one of the most widespread disinfectants in the food industry despite its disadvan-
tages and the growing use of new products on the market. Its desirable reaction produces
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both hypochlorous acid (HOCl) and the hypochlorite ion (-OCl), which are strong oxidising
agents that eliminate cells given their ability to cross the cell membrane, and to oxidise
the sulfhydryl groups of certain enzymes participating on the glycolytic pathway [97]. It
has been described to react with wide-ranging biological molecules, such as proteins [105],
amino acids [106], lipids [107], peptides [108], and DNA [109] under physiological pH
conditions [110].

However, sodium hypochlorite may be affected by organic matter because free chlo-
rine might react with natural organic matter and be converted into inorganic chloramines
to generate trihalomethanes, by reducing antimicrobial activity against biofilms [111], and
it is known to be less reactive than free chlorine. Peracetic acid is reported as being the
most effective sanitiser against biofilms because it is a strong oxidising agent that does not
interact with organic matter waste [112,113].

2. Quaternary ammonium:

QACs, such as benzalkonium chloride, cetrimide, didecyldimethylammonium chlo-
ride, and cetylpyridinium chloride, are cationic detergents (surfactants or surface-active
agents). They reduce surface tension and form micelles to lead to dispersion in a liquid.
This property is resourceful for removing microorganisms. They are membrane-active
agents that interact with not only the cytoplasmic membrane of bacteria, but with the
plasma membrane of yeast. Their hydrophobic activity also makes them effective against
lipid-containing viruses. QACs interact with intracellular targets and bind to DNA [114].
However, their efficacy is still questioned given the appearance of relatively high resistance
to Listeria monocytogenes (10%), Staphylococcus spp. (13%), and Pseudomonas spp. (30%), and
lower resistance to lactic acid the bacteria (1.5%) and coliforms (1%) isolated from food and
the food processing industry [115].

3. Peracetic acid:

In the last decade, peracetic acid (PAA) has been widely used by the food industry
in water and wastewater treatment, even in paper machines [116], to control biofilms. Its
antimicrobial effect is probably due to the oxidation of thiol groups in proteins, disruption
of membranes [117], or damage to bases in DNA [118]. Its use has been shown to increase
the sensitivity of bacterial spores to heat [119]. The efficacy and environmental safety of
peracetic acid make it an attractive disinfecting agent for industrial use.

Bacterial regrowth after oxidant treatment (peracetic acid and free chlorine) depends
on the absence or presence of organic matter. The oxidation-reduction (redox) potential
of PAA (1.385 V vs. standard hydrogen electrode or standard hydrogen electrode (SHE)
for the redox couple of CH3COOOH(aq)/(CH3COO−

(aq) + H2O(l))) comes close to that of
free chlorine (1.288 V vs. SHE for the redox couple of HOCl(aq)/Cl−(aq)) under biochemical
standard state conditions (pH 7.0, 25 ◦C, 101.325 Pa) [120]. For this reason, acid peracetic
and free chlorine may have similar efficiencies in preventing planktonic bacteria regrowth
in the absence of organic matter. As PAA reacts with organic matter more slowly than free
chlorine, its self-decomposition is slower [121].

Resistance to Disinfectants

Bacterial resistance to disinfectants in the planktonic phase can hardly be compared to
biofilm resistance. Yet several studies have shown contrary results to widespread belief,
such as the existence of wide interspecific variability of resistance to disinfectants. Gram-
positive strains generally appear to better resist than Gram-negative strains. This resistance
is also variable among strains of the same species [122].

Given the growing interest in knowing biofilm resistance to chlorine, quaternary
ammonium and peracetic acid, many studies have been conducted [123]. The bacteria
in mature biofilms are 10- to 1000-fold more resistant to antibiotics than the bacteria in
the planktonic phase [124], and this resistance appears against biocides. However, this
natural resistance is still unknown, and probably depends on many factors, mainly of
structural biofilm barriers and genetic factors for adaptation. To explain this resistance,



Int. J. Environ. Res. Public Health 2021, 18, 2014 12 of 31

several authors [125] have suggested three possible causes by three hypotheses: the first
is based on the slow or incomplete diffusion of antibiotics into inner biofilm layers. The
second lies in the changes taking place in the biofilm microenvironment as some biofilm
bacteria fall into a slow growth state due to lack of nutrients or given the accumulation of
harmful metabolites and, therefore, survive [126]. Finally, the third hypothesis indicates a
subpopulation of cells in the biofilm whose differentiation resembles the spore formation
process. They have a unique and highly resistant phenotype to protect them from the
effects of antibiotics, and are a biologically programmed response to the sessile life form of
bacteria [127].

In addition, aquatic fauna is less affected by PAA than by chlorine [128]. There-
fore, PAA is considered a green alternative to chlorine for disinfection purposes, and its
disinfection performance is currently being investigated [120].

As previously mentioned, there are two very different situations for action against
biofilm formation: the food industry and the health field. There is still a lot to do in
both fields, but it is true that CDP is practically the only implementation in the food
industry. The health field has witnessed much more progress: phages [129], aerosolisa-
tion [130], sonication brush [131], and metal ion solutions (silver, copper, platinum, gold,
and palladium) [132].

In short, some authors [133] establish two strategies for fighting biofilms in the food
industry: structural modification of surfaces or application of antibacterial or antibiofilm
coatings [134]. Thus, several alternative products to classic disinfectants (chlorine, quater-
nary ammonium, etc.), such as, plant-derived antimicrobials (essential oils: orange-sorrel,
lemon, lavender, chamomile, peppermint, oregano), with thymol and carvacrol being the
compounds that display more significant antimicrobial action in shorter action times.

4.4. Alternative Methods to Eliminate Biofilms

Phages: bacteriophages are specific “viruses” of microbial cells that are specific to the
different serotypes or strains of microbial species, and are obligate parasites with a genetic
parasitism [135]. Bacteriophages inject their DNA and force the cell to produce the bacte-
riophage genome and structures (e.g., capsid and tail). When phages are complete, they
lyse cells, which means that bacteriophage infection can destroy the entire colony [136,137].
In the last few years, the FDA/USA approved preparing bacteriophages (LISTEX P100) to
combat the direct presence of L. monocytogenes in foods [138,139].

Aerosolisation: a disinfection method with different disinfectants applied to working
areas by pulverisation. Several authors [138] have shown its efficacy as a biofilm control
method in the food industry and hospitals by using hydrogen peroxide [140], sodium
hypochlorite, and peracetic acid [141].

Knowledge about the resistance mechanisms associated with biofilm evolution could
be primordial to develop new actions or strategies by biocides and antibiotics [142], such as
modified wound dressings with phyto-nanostructured coatings to prevent staphylococcal
and pseudomonal biofilm development [143].

Involving bacterial adherence: in recent years, new biochemistry methods have been
studied to prevent biofilm formation. The most efficient strategy would interfere with
bacterial adherence, as this first step is paramount in biofilm formation, performed by the
direct blockage of surface receptors [144] or by a non-specific strategy, which normally
involves compounds with anti-adherence properties [145]. Another biofilm inhibition form
would be to impede communication processes between bacteria to enter the biofilm by
employing different natural or artificially synthesised compounds [146]. One example
of this is P. aeruginosa, which uses quorum sensing for modular biofilm evolution, and
proposes that agents are capable of blocking quorum sensing (QS), and could be useful for
avoiding biofilm formation [144].

The role of the QS in biofilms includes controlling the cell-to-cell communicating sys-
tem in response to small diffusible signal molecules, such as N-acyl-homoserine lactones
(AHLs), produced by Gram-negative bacteria [147]. It has been shown to play crucial roles
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in biofilm formation by activating the transcription of related genes [148]. Specifically,
different AHLs have been detected in biofilm reactors and several bacterial species have
been identified to possess the capacity to produce AHLs [149]. Thus, AHLs-based QS
has been widely reported to regulate many microbial behaviours, including EPS expres-
sion, nitrogen transformation, organic pollutant degradation and microbial community
construction [150].

Current advances in nanoscience nanotechnology and nanosensors [151] have emerged
for applications to detect microorganisms and biofilms [152] with high sensitivity and good
spatial resolution on nanoscale scopes [153]. Recent works have been published on imaging
approaches of biofilm microprocesses [154], in-situ surface-enhanced Raman Scattering
(SERS) analyses, biofilm visualisation [155] and biosensors of bacteria in foods [156]. The
enormous advantages and great potential observed in bioassays based on multifunctional
optical nanosensors are promising to continue with a view to ensure and promote food
safety and quality. From the detection targets perspective, QS detection might become a
new biofilm research trend based on evidence that biofilm formation can be inhibited by
blocking QS [151].

5. Biofilm Identification Techniques and Methods to Visualise Biofilms In Situ
5.1. General Aspects of Biofilm Study Techniques

Doubtlessly, biofilms can pose a major challenge in both clinical microbiology and
hygiene food areas. In the latter area, several authors consider them a real threat. Currently,
methods aim to analyse biofilm formation and development, which have not yet been
standardised. Different methods have been followed to qualitatively and quantitatively
evaluate biofilms, and each one is useful for estimating one peculiar biofilm lifestyle
aspect [157]. Nevertheless, research to identify and acquire knowledge of biofilms has
allowed distinct techniques to be developed and adapted from microbiology or cell histol-
ogy. It is essential to evaluate biofilm formation for a sensitive, specific and reproducible
methodology for biofilm quantification to become available.

Different approaches classify the methods followed to detection biofilms on very
distinct surfaces: (i) the simplest classification of methods is direct or indirect [17]. (ii)
Rapid tests of hygienic control, and methods for microscopic, biomolecular, extracellular
polymeric, physical, or chemical substances (EPS) are another possible classification [158].
(iii) A recent publication [159] only refers to the technology of the referred methods being
classified as physics, physico-chemistry or chemistry, and recommends three effective
approaches for testing biofilms: (a) observations by various microscopic methods with
different view fields at the same point; (b) in-depth data analyses during microscopic
image processing; (c) a combination study using atomic force microscopy (AFM) and
chemical analysis. Perhaps this is the most advanced and appropriate methodology for
biofilm analyses, where the detailed image of the surface will help to build a relation
among the biofilm matrix, interactions and other factors like pH, surfaces [159]. However,
there is another case in which bacterial species can help to reduce biofilms, where Bacillus
licheniformis can express hydrolytic enzymes capable of reducing detrimental biofilms [160].

Therefore, depending on the set objectives, that is, what we wish to achieve with
the biofilm, we should choose a technique according to our study. Not all techniques are
suitable for a certain purpose, but might be compatible. Thus, some methods are suited for
quantifying the biofilm matrix, while others are able to evaluate both living and dead cells,
or exclusively quantify viable cells in biofilms.

By considering the complexity and heterogeneity of the biofilm structure, the exact
research objective should be set. The amount of EPS, the total number of bacterial cells
embedded in biofilms, or the actual number of living bacteria in biofilms must be consid-
ered to be different targets that require distinct experimental approaches [157]. We should
bear in mind that the biofilm volume is constituted mainly by an extracellular matrix
(95–65% range), which is composed mostly of proteins (>2%), and other constituents, such
as polysaccharides (1–2%), DNA molecules (<1%), RNA (<1%), ions (bound and free),
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and finally 97% water [161]. Thus, the biofilm research methodology should address the
identification of bacteria and other matrix constituents.

In order to obtain a fundamental understanding of the formation and presence of
bacterial biofilms, our analysis should include the detection of bacteria and the matrix.
The most frequently followed methods to assess biofilm heterogeneity are direct micro-
scopic imaging of the local biofilm morphology or microscopic measurements of local
biofilm thickness [162]. For many applications, time-lapse microscopy with Confocal Laser
Scanning Microscopy (CLSM) is an ideal tool for monitoring at a spatial resolution in the
order of micrometres, and it allows the non-destructive study of biofilms by examining
all layers at different depths. In this way, it is possible to reconstruct a three-dimensional
structure [163]. Matrix detection can be achieved by a double-staining technique combined
with CLSM, which allows the simultaneous imaging of bacterial cells and glycocalyx in
biofilms [164].

5.2. Colorimetric Methods
5.2.1. Evaluating the Biofilm Matrix

Staining the biofilms grown in microtiter plates wells is widely utilised by researchers
to screen and compare biofilm formation by different bacteria or under various condi-
tions [165]. Of the methods described in the literature, crystal violet (CAS number 931418
92 7) [166] is the most widespread for biofilm biomass quantification [167,168]. This basic
dye binds negatively charged molecules and, thus, stains are able to dye both bacteria and
the surrounding biofilm matrix. Acetic acid can be used as the extraction solvent and be
measured by absorbance at 700–600 nm. Safranin staining can also be employed for biofilm
biomass quantification [165,169], but results in lower optical densities than crystal violet
staining and, therefore, may not be as sensitive to detect small amounts of biofilm [165].

Crystal violet staining tests the concentration of the dye incorporated into bacterial
cell walls, and depends on cells’ integrity, but not on viability. However, other methods like
ATP bioluminescence report the cell’s metabolic status and drops to undetectable limits
within minutes after cell death. Resorting to both methods can provide supplementary
information on the cell exposed to disinfectant. The results can indicate that, despite the
drastic drop in viable cell numbers in the biofilm after disinfectant treatment, a significant
number of intact cells, or cellular debris, may still be capable of retaining the dye. This
observation leads to the question about the reliability of crystal violet staining as a method
to monitor biofilm disinfection [170].

Another colorimetric method for living cells is fluorescein diacetate (CAS number
596 09 8), which employs a useful live-cell fluorescent stain that is hydrolysed to fluorescent
fluorescein in live cells. The signal can be spectrophotometrically measured. This is suitable
for cell viability assays with intact membranes as dead cells are unable to metabolise
fluorescein diacetate. Thus, there is no fluorescent signal [157].

5.2.2. Cell Staining

Visualising a cell with fluorescent compounds provides a wide variety of information
to analyse cell functions. Various activities and cell structures can be targeted for staining
with fluorescent compounds [171]. These cell components are mostly cell membranes,
nucleotides, and proteins. The stain can pass to cells depending on the molecule charge,
hydrophobicity, or reactivity. Thus, small neutral and positively charged fluorescent
compounds can normally reach mitochondria for dyeing. Negatively charged molecules
cannot pass through viable cell membranes. Ester is a suitable functional group for staining
viable cells because it can pass through viable cell membranes, where it is hydrolysed by
cellular esterases into a negatively charged compound [171].

Other complementary techniques can be run to examine the performances of advanced
microscopic techniques employed to study microbial biofilms (i.e., confocal laser scanning
microscopy, mass spectrometry, electron microscopy, Raman spectroscopy) [157].
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Spectrofluorometric assays for the quantification of biofilms of gram-negative and
gram-positive bacteria is a method that utilises the specific binding of the wheat germ
agglutinin-Alexa Fluor 488 conjugate (WGA) to N-acetylglucosamine in biofilms [172].
This lectin conjugate also binds to N-acetylneuraminic acid on the peptidoglycan layer
of gram-positive bacteria. WGA specifically binds to polysaccharide adhesin (poly N-
acetylglucosamine), which is involved in biofilm formation by both gram-positive and
gram-negative bacteria. Burton et al. [172] compared the colorimetric assay with the
spectrofluorometric assay, whose results revealed that WGA staining may be a more
specific means of E. coli and Staphylococcus epidermidis biofilm detection and quantification.

5.2.3. LIVE/DEAD

This method is based on employing two different nucleic acid binding stains. The
first dye is green fluorescent (Syto9, λex 486 nm and λem 501 nm), which is able to cross
all bacterial membranes and bind to the DNA of both Gram-positive and Gram-negative
bacteria. The second dye is red-fluorescent (propidium-iodide (PI), CAS number 25535-16-4,
λex 530 nm and λem 620 nm), which crosses only damaged bacterial membranes. Stained
samples are observed under a fluorescent optical microscopy to evaluate live and dead
bacterial populations (see Figures 3–5). In fact, live bacteria fluoresce in green and dead
bacteria fluoresce in orange/red [173]. The efficiency of both stains is conditioned by some
factors, such as the reagent’s binding affinity to cells [169], physiological cell state [174],
reagent concentration [175], and temperature and incubation time [176].

Both stains are suitable for use in fluorescence microscopy, confocal laser scanning mi-
croscopy, fluorometry flow and cytometry, and can be employed as a nuclear counterstain.
LIVE/DEAD staining cannot be performed for the direct staining of biofilms on surfaces
because of interference between the stain and polysaccharides of the biofilm matrix and
slime [177].

This method’s main downside involves having to observe a statistically relevant
portion of the sample, which is representative of the whole population. Overall, the
method provides only semiquantitative results because the total count of bacterial cells
is not possible [178]. Nevertheless, this inconvenience can be prevented by employing
imaging software, such as cellSens®, which can count and measure cells depending on the
staining cell.
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ium iodine) after treatment with Sodium hypochlorite (350 ppm) for 15 min. Viable bacteria (green)
and damaged bacteria (red). Magnification ×100.

5.2.4. Different Fluorescents Stainings

The application of fluorescent stains to cells and food soil can be useful for the quantita-
tive analysis of surface cleanability. Thus, the stain combination and working concentration
are essential for assessing the hygienic conditions of surfaces [179] or testing disinfectant
efficacy against bacteria. Different methods can be followed to visualise and differentiate
cells and organic matter. The staining techniques to measure surface coverage by the two
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stains by image analysis are highlighted [180] using DAPI and Rhodamine B, DAPI and
Fluorescein, or non-specific stains, such as acridine orange, and are also available and
specific for particular organic matter [180], and/or for microorganisms [181].

The use of different staining types can be explained by the results obtained in each
study after checking the best biofilm and cells staining. These results depend on bacterial
species, residual organic matter on surfaces, pH, disinfectant, etc. Whitehead et al. [182]
conducted a large study with different dyeing, and concluded that the best combination
was DAPI (CAS no. 28718-90-3, λex 340 nm, λem 488 nm, blue) and Rhodamine B (CAS no.
81-88-9, λex 553 nm, λem 627 nm, red), as it allowed the quantitative determination of L.
monocytogenes and whey on a surface with fluorescent staining under epifluorescence mi-
croscopy. It is also useful for demonstrating the hygienic status of surfaces (Figures 7 and 8).
The other tested staining procedures were unsatisfactory, or only slightly so, for distin-
guishing between viable and dead cells [182].

DAPI staining is suitable for studying cell viability in planktonic situations (ini-
tial attachment) and biofilms attached to surfaces (proliferation and growth–maturation)
(Figure 6). Nevertheless, coculture biofilm studies need to spatially discriminate between
species, and classic methods, such as crystal violet (CV), SYTO9/propidium iodide, and
DAPI staining are insufficient given their non-specific nature [183], and selectively bind
to each species. This burden can be overcome by applications, such as mutants express-
ing green fluorescent protein (GFP) [182,184], fluorescently labelled antibodies [185], and
fluorescence in situ hybridisation (FISH).

The DAPI/Rhodamine B combination in biofilms offers the best resolution and quan-
tification power between cells and organic matter (Figures 6–8). Several authors, such as
Almeida et al. [183], have applied peptide nucleic acid fluorescence in situ hybridization
(PNA FISH) combined with DAPI as a steady method to evaluate, validate, quantify, and
characterise the initial adhesion and biofilm formation of three microorganisms: Salmonella
enterica, Listeria monocytogenes and Escherichia coli.
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5.2.5. Confocal Laser Scanning Microscopy (CLSM)

Confocal laser scanning microscopy (CLSM) is an optical microscope equipped with a
laser beam that is particularly useful for examining thick samples like microbial biofilms.
Samples are stained with specific fluorescent dye insofar as the fluorescent light from
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the illuminated spot is collected on the objective and transformed by a photodiode into
an electrical signal to be computer-processed [160] given the complexity of the microbial
biofilm’s extracellular matrix formed by heterogeneous compounds: polysaccharide, lipids,
enzymes, extracellular DNA, and proteins [186].

However, no fluorescence labelling method is currently available for visualising
the whole biofilm matrix owing to its different compositions, which depend on each
bacterium and environmental condition, which means that each matrix component must
be individually stained. Unfortunately, however, a general stain for polysaccharides does
not exist because the chemical structure of matrix polysaccharides differs between distinct
bacteria: Gram + and Gram− [186].

Extracellular DNA has been related to bacterial attachment and early biofilm formation
stages in many species across the phylogenetic tree. These findings were discovered by
employing combined stains, such as PicoGreen® and SYTOX®, PI, 1,3-dichloro-7-hydroxy-
9,9-dimethyl-2(9H)-acridinone (DDAO), TOTO®-1, TO-PRO® 3. Most reports employed
DDAO for staining eDNA in biofilms after the first publications by Allesen-Holm et al. [187]
and Conover et al. [188]. Excellent efficacy has been reported for TOTO®-1, SYTOX® Green,
while PI provides the most reliable results. TO-PRO®-3 and DDAO are not completely
cell-impermeant [189].

With biofilm proteins, which may sometimes be more important than polysaccharides,
this occurs in cell wall-anchored proteins in Staphylococcus aureus and S. epidermidis, and
contributes to aggregation by homophilic interactions [190], or interacts with matrix com-
ponents that originate from the host, such as fibronectin, collagen, or fibrin [191]. These
biofilm proteins can be visualised with strains FilmTracer™ SyPro® [192]. Several proteins
also play a key role in the P. aeruginosa biofilm matrix, such as CdrA and others, perform
functions that range from nutrient acquisition to protection from oxidative stress [193].
Moreover, serine-protease inhibitor ecotin has been identified as a matrix protein that binds
to Psl [194].

Nowadays, confocal microscopy is a relevant tool for studying the structure of biofilms
thanks to its excellent real-time visualisation capability of fully hydrated living samples.
The limitation of light microscopy’s spatial resolution is improved by a fluorescence tech-
nique and by coupling CLSM with other imaging techniques [157]. The PNA FISH and
CLSM combination allows the spatial organisation of and changes in specific members
of complex microbial populations to be studied without disturbing the biofilm struc-
ture [195,196].

5.3. Raman Microscopy (RM)

This non-destructive analytical technique provides fingerprint spectra with the spatial
resolution of an optical microscope [197]. This original technique permits the quantitative,
label-free, non-invasive, and rapid monitoring of biochemical changes in complex biofilm
matrices with high sensitivity and specificity [198]. Raman spectra studies are characterised
by high specificity, and by usually revealing sharper clearer bands than IR spectra, and
a small water background. Compared to IR microscopy, excitation with visible light
can be employed in Raman spectroscopy, which allows standard optics to be utilised.
Other advantages include its application to characterise and identify different biological
systems (fungi, bacteria, yeasts) because all biologically associated molecules (e.g., nucleic
acids, proteins, lipids, carbohydrates) exhibit distinct spectral features [197]. Therefore,
Ivleva et al. [197] analysed seven different specific microorganisms by RM to characterise
microorganisms in biofilms.

Another author evaluated the antibiotic effect on biofilms [198], and the oxidation
of graphene as antibacterial activity against the Pseudomonas putida biofilm with variable
ages [199].
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5.4. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) provides useful information about size, shape,
and localisation in the biofilms of single bacteria, and in biofilm formation process steps
about bacterial interactions and EPS production [200]. Surface topography has been
widely discussed as a parameter that influences microbial adhesion. In line with this, the
experiments by Kouider et al. [201], which employed SEM to establish the effect of stainless
steel surface roughness on Staphylococcus aureus adhesion, revealed that the adhesion level
largely depends on substrate roughness with a maximum at Ra = 0.025 µm and a minimum
at Ra = 0.8 µm. [202]. Mallouki et al. studied the anti-adhesive effect of fucans by SEM and
a MATLAB programme to determine the number and characteristics of adhered cells [203].

SEM has been extensively used to qualitatively observe biofilm disruption owing
to its high resolution, and is usually applied in combination with biological assays of
biofilm removal efficiency [204,205]. With SEM images, simple thresholding cannot often
be implemented because biofilm normal surface intensity values are similar due to the
same effective contrast seen by SEM. Rough (textured) biomaterial surfaces complicate
image analyses, and advanced segmentation methods, such as semi-supervised machine-
learning techniques, are usually needed [206]. The biofilm might be segmented from
the surface using the Trainable Weka Segmentation plugin, which utilises a collection of
machine-learning algorithms for segmentation purposes [207].

As with other previously mentioned techniques, SEM is a widely used resource for
confirming the presence of bacteria and the exopolysaccharide matrix when studying
biofilms (Figures 9–11). These studies usually obtain SEM results and are supplemented
with the results of other techniques like confocal [208,209], surface-enhanced Raman scat-
tering (SERS) spectroscopy [210], epifluorescence microscopy (DAPI/Rhodamine B), and
contact plates [211].
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5.5. Microbiological Methods

The estimation of the total number of organisms (total viable count) is the most widely
used technique to estimate biofilm viable cells. This count is done on agar media and its
result is colony-forming units (CFU). Based on the serial dilution series approach followed
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to quantify microorganisms, this technique is easy and requires no special equipment [158].
Surface samples (stainless steel, plastic, rubber coupons) with biofilms are analysed by
swab or sonication, and transferred to agar plates. This culture medium can be specific for
either the studied species or non-specific species (plate count agar media).

Several authors like [212] discovered that some bacterial species can enter a distinct
state called the viable, but non-culturable (VBNC) state. These living cells have lost the
ability to grow on plate agar media. However, this method has serious drawbacks and
limitations [213]: (i) the fraction of detached live cells may not be representative of the initial
biofilm population; (ii) a subpopulation of biofilm cells can be viable, but non-culturable
(VBNC), and cannot be detected by the CFU approach for the CFU estimation of the
recovery and quantification of viable biofilm cells. Several authors, such as Cerca et al. [214]
and Olivera et al. [215], have proposed applying flow cytometry coupled with a few
possible fluorophores as an alternative to the total viable count from biofilms because flow
cytometry solves both CFU counting limitations by distinguishing total, dead, and VBNC.

The total viable count technique is fundamental for the evolution of biofilm studies,
as are studies about the efficacy of industrial disinfectants and increased resistance to the
application of different disinfectants. Table 2 shows some results of disinfectant efficacy
against several bacterial species.

Table 2. Resistance of several bacterial species to disinfectant on different material surfaces.

Bacterial Species Disinfectant ppm or % Surfaces Biofilm. Log
Reduction CFU Reference

S. aureus Sodium hypochlorite 250 Stainless steel/PP 4.5/4.4 [212]
Cronobacter Sakazakii Sodium hypochlorite 250 Stainless steel/PP 3.7/3.9 [216]

S. Typhimurium Sodium hypochlorite 250 Stainless steel/PP 5.82/6.1 [216]
S. aeruginosa Sodium hypochlorite 250, 500 Stainless steel 316 2/100% [217]
S. aeruginosa Sodium hypochlorite 750, 1000 Stainless steel 316 100%/100% [217]

B. cereus NaOH and HNO3, 65 ◦C 1% CIP dairy 2 [218]
Enterococcus faecium Sodium hypochlorite 100 Stainless steel 3 [98]

E. faecium Peracetic acid 300 Stainless steel 4 [98]
Rhodococcus erythropolis Alkyl amine 1–1.3% Stainless steel >5 [103]

R. erythropolis Peracetic acid 0.2% Stainless steel 0.48 [103]
R. erythropolis Sodium hypochlorite 0.5–1% Stainless steel 4.51 [103]
R. erythropolis QAC 200 Stainless steel >5 [103]

Sphingomonas sp. Alkyl amine 1–1.3% Stainless steel >5 [103]
Sphingomonas sp. Peracetic acid 0.2% Stainless steel >5 [103]
Sphingomonas sp. Sodium hypochlorite 0.5–1% Stainless steel >5 [103]
Sphingomonas sp. QAC 200 Stainless steel >5 [103]
Methylobacterium

rhodesianum Alkyl amine 1–1.3% Stainless steel 4.48 [103]
M. rhodesianum Peracetic acid 0.2% Stainless steel >5 [103]
M. rhodesianum Sodium hypochlorite 0.5–1% Stainless steel 0.01 [103]
M. rhodesianum QAC 200 Stainless steel 0.64 [103]

L. monocytogenes Sodium hydroxide 0.5% Rubber 0.66 [112]
L. monocytogenes QAC 0.5% Rubber 1.72 [112]
L. monocytogenes Sodium hypochlorite 0.5% Rubber 1.79 [112]
L. monocytogenes Peracetic acid 0.5% Rubber 5.10 [112]
L. monocytogenes Sodium hydroxide 0.5% Polypropylene 1.20 [112]
L. monocytogenes QAC 0.5% Polypropylene 2.57 [112]
L. monocytogenes Sodium hypochlorite 0.5% Polypropylene 2.74 [112]
L. monocytogenes Peracetic acid 0.5% Polypropylene 6.62 [112]
L. monocytogenes Sodium hydroxide 0.5% Stainless steel 1 [112]
L. monocytogenes QAC 0.5% Stainless steel 4.06 [112]
L. monocytogenes Sodium hypochlorite 0.5% Stainless steel 1.97 [112]
L. monocytogenes Peracetic acid 0.5% Stainless steel 6.63 [112]
L. monocytogenes Sodium hydroxide 0.5% Aluminium foil 0.52 [112]
L. monocytogenes QAC 0.5% Aluminium foil 5.1 [112]
L. monocytogenes Sodium hypochlorite 0.5% Aluminium foil 3.84 [112]
L. monocytogenes Peracetic acid 0.5% Aluminium foil 6.54 [112]
L. monocytogenes Benzalkonium chloride 100–10,000 Polystyrene 1–7 [112]
L. monocytogenes Benzalkonium chloride 10 Polystyrene 100% [170]

Colony-forming units (CFU); cleaning-in-place (CIP); polypropylene (PP); quaternary ammonium compounds (QAC).
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6. Conclusions

Biofilms have become a major environmental microbiology concern in the food indus-
try over the last 30 years. This topic is prominent due to the potential for contamination of
food from biofilms; they are responsible for more than 20% of food poisoning cases and for
being up to 1000-fold more tolerant to antibiotics than their planktonic counterparts [219].

Many bacterial species have the ability to form biofilms, such as microbial subsistences
(when faced with hostilities from the environment), antibiotics, and disinfectants. For these
reasons, cleaning and disinfecting in the food industry must bring about changes that
favour eliminating biofilms, because once they form, the resulting costs and risks will
be very high. As previously discovered in many publications, the ability of bacteria
to form biofilms is greater than the discoveries. Thus, they must be eliminated. The
advancement of new, non-destructive technologies (e.g., laser dissection) to study biofilms
and their results should be applied to biofilm diagnoses in the food industry, to better
understand the physiological anatomy of microbes and biofilms, and future applications in
the food industry.
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